Ab initio thermal transport in compound semiconductors
نویسندگان
چکیده
We use a recently developed ab initio approach to calculate the lattice thermal conductivities of compound semiconductors. An exact numerical solution of the phonon Boltzmann transport equation is implemented, which uses harmonic and anharmonic interatomic force constants determined from density functional theory as inputs. We discuss the method for calculating the anharmonic interatomic force constants in some detail, and we describe their role in providing accurate thermal conductivities in a range of systems. This first-principles approach obtains good agreement with experimental results for well-characterized systems (Si, Ge, and GaAs). We determine the intrinsic upper bound to the thermal conductivities of cubic aluminum-V, gallium-V, and indium-V compounds as limited by anharmonic phonon scattering. The effects of phonon-isotope scattering on the thermal conductivities are examined in these materials and compared to available experimental data. We also obtain the lattice thermal conductivities of other technologically important materials, AlN and SiC. For most materials, good agreement with the experimental lattice thermal conductivities for naturally occurring isotopic compositions is found. We show that the overall frequency scale of the acoustic phonons and the size of the gap between acoustic and optic phonons play important roles in determining the lattice thermal conductivity of each system. The first-principles approach used here can provide quantitative predictions of thermal transport in a wide range of systems.
منابع مشابه
Ab-initio study of Electronic, Optical, Dynamic and Thermoelectric properties of CuSbX2 (X=S,Se) compounds
Abstract: In this work we investigate the electronic, optical, dynamic and thermoelectric properties of ternary copper-based Chalcogenides CuSbX2 (X= S, Se) compounds. Calculations are based on density functional theory and the semi-classical Boltzmann theory. Computations have been carried out by using Quantum-Espresso (PWSCF) package and ab-initio pseudo-potential technique. To estimate the e...
متن کاملAb initio electron mobility and polar phonon scattering in GaAs
In polar semiconductors and oxides, the long-range nature of the electron-phonon (e-ph) interaction is a bottleneck to compute charge transport from first principles. Here, we develop an efficient ab initio scheme to compute and converge the e-ph relaxation times (RTs) and electron mobility in polar materials. We apply our approach to GaAs, where by using the Boltzmann equation with state-depen...
متن کاملCorrigendum: Thermal transport in nanocrystalline Si and SiGe by ab initio based Monte Carlo simulation
Nanocrystalline thermoelectric materials based on Si have long been of interest because Si is earth-abundant, inexpensive, and non-toxic. However, a poor understanding of phonon grain boundary scattering and its effect on thermal conductivity has impeded efforts to improve the thermoelectric figure of merit. Here, we report an ab-initio based computational study of thermal transport in nanocrys...
متن کاملTime-domain ab initio modeling of photoinduced dynamics at nanoscale interfaces.
Nonequilibrium processes involving electronic and vibrational degrees of freedom in nanoscale materials are under active experimental investigation. Corresponding theoretical studies are much scarcer. The review starts with the basics of time-dependent density functional theory, recent developments in nonadiabatic molecular dynamics, and the fusion of the two techniques. Ab initio simulations o...
متن کاملSynthesis and Ab Initio Study of Pyrano[2,3-d]pyrimidine Derivatives
Tetrahydrobenzo[b]pyran derivatives 1 were utilized for the synthesis of several new pyrano[2,3-d]pyrimidine derivatives 2. Compound 2 was obtained in the presence of Ac2O/H2SO4 (as a catalyst) and was confirmed by spectroscopic data such as IR, 1H NMR and 13C NMR. Ab initio calculation was carried out to study geometric optimization, t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013